POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Motion planning methods and algorithms [S2AiR2-RiSA>MiAPR]

dr hab. inż. Dominik Belter prof. P dominik.belter@put.poznan.pl	Р		
Coordinators		Lecturers	
Number of credit points 4,00			
Tutorials 0	Projects/seminars 0	6	
Number of hours Lecture 30	Laboratory classe 30	S	Other 0
Form of study full-time		Requirements compulsory	
Level of study second-cycle		Course offered ir Polish	1
Area of study (specialization) Autonomous Robots and Systems		Profile of study general academi	с
Course Field of study Automatic Control and Robotics		Year/Semester 1/1	

Prerequisites

A student starting this course should have a basic knowledge of programming, Linux and Robot Operating System. He or she should also have the ability to obtain information from the sources and be ready to cooperate within the team.

Course objective

To provide a knowledge about mobile and manipulation robots motion planning, designing motion planning systems and matching solutions to real problems.

Course-related learning outcomes

none

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

The knowledge acquired during the lecture is verified by one 45-minute exam conducted in an examination session. The examination consists of 20-30 (test) questions and up to 5 open questions,

differently scored. The credit threshold: 50% of points. Issues for the examination, on the basis of which the questions are developed are made available during the lecture.

Skills acquired during the laboratory classes are verified on the basis of a credit colloquium consisting of 20 questions and checking the practical implementation of the motion planning problem. The credit threshold: 50% of points.

Programme content

To provide a knowledge about mobile and manipulation robots motion planning, designing motion planning systems and matching solutions to real problems.

Course topics

Lecture:

- 1. introduction to motion planning
- 2 Ways of representing the environment and motion restrictions
- 3. control architectures in robotics and local planning (collision avoidance)
- 4. introduction to path planning
- 5. planning methods using graphs and raster maps
- 6. methods of sampling the search space
- 7 Multi-criteria motion planning
- 8. Data Collection Planning and Traveling Salesman Problem
- 9 Kinodynamic planning
- 10 Planning using neural networks (Deep RL)
- 11 Examples of applications

Laboratory:

- 1. introduction to Robot Operating System data structures in motion planning and display in Rviz
- 2. access to data structures in the Robot Operating System
- 3. motion planning using graphical methods
- 4. motion planning using space sampling methods
- 5 Motion planning using the OMPL library
- 6. implementation of the motion planning task on the selected problem

Teaching methods

- 1. lecture: multimedia presentation, illustrated with examples given on the board.
- 2. laboratory exercises: instructions carried out on computers and robots available in the laboratory

Bibliography

- Steven M. LaValle, Planning Algorithms, Cambridge University, 2006

- Sebastian Thrun, Wolfram Burgard, Dieter Fox, Probabilistic Robotics, MIT Press, 2005

- H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Boston, 2005

Breakdown of average student's workload

	Hours	ECTS
Total workload		
Classes requiring direct contact with the teacher		
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)		